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Abstract

We study how risk preferences may be subject to context effect specific to the risk
domain—the amount of avoidable risk at any given time. Avoidable risk is captured
by the riskiness of the safest option in a choice set, which induces set-dependent risk
preferences. In a laboratory experiment, we find that adding safer options systematically
increases risk aversion, even when the added options are not themselves chosen. By
contrast, adding riskier options does not result in detectable change in risk attitude.
Our finding suggests that context effect specialized to the risk domain may overwhelm
those that are generally applicable in all types of choice domains (such as the compromise
effect) when it comes to studying context-dependent risk preferences.

1 Introduction

Understanding risk attitudes is paramount to a wide range of economic models and applica-
tions. To this end, varying risk attitudes at the population level (e.g., as affected by wealth,
age, gender) and across different choice domains (e.g., financial, health, ethical) have invited
extensive studies and surveys.1 By contrast, less is known about how the very structure of

∗Many thanks to Mark Dean and Pietro Ortoleva for the advice and support. We are grateful for com-
ments from Michael Woodford, Jacopo Perego, Evan Friedman, and the members of Columbia Economics
Cognition and Decision Laboratory. We acknowledge the financial support of grants from the Columbia
Experimental Laboratory for Social Sciences. All data were collected with the approval of the Columbia
University Institutional Review Board (protocol AAAS5801).

†Antai College of Economics and Management, Shanghai Jiao Tong University. Email: rc@xzlim.com.
‡Department of Economics, Columbia University. Email: sr3300@columbia.edu.
1Impossible to list all, a few examples are: Weber et al. (2002); Eckel and Grossman (2008); Nicholson
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every choice problem involving uncertainty—such as the avoidability of risk—directly affects
risk aversion. For instance, even when wealth levels are fixed, an agent may choose a riskier
investment over a safer one but reverses her decision when the same two options appear
alongside a risk-free option, leading to a case of set-dependent preferences specialized to risk
preferences.

This paper focuses on a specific kind of set-dependent risk preferences : those affected by
the amount of risk that an agent can avoid at the time of decision making. We hypothesize
that when the safest option in a choice set becomes even safer, the agent becomes more risk
averse. To illustrate, consider a group of investors who must decide between investing in a
composite index or a high-risk commodity. Each of these options is sensible and depends on
the risk preference of the investor. However, imagine a corporate bond becomes available
and some investors who originally chose the high-risk commodity switch to investing in the
composite index. This behavior is inconsistent with any set-independent risk preferences.
Lim (2021) characterizes this behavior with a model in which the very same agent would use
a more concave utility function when safer options are added to a choice set. The intuition
is straightforward—risk is psychologically more bearable when it is unavoidable.

In a laboratory setting, we test for changes in risk attitude when a third option is added to
a choice set, which originally contains two alternatives of intermediate riskiness. The added
option is either extremely risky or extremely safe and expands the choice set by increasing
the amount of risk an agent can take or avoid. All lotteries take the form “a 50% chance of
x (low prize) and a 50% chance of y (high prize)”, and a lottery is deemed safer when x and
y gets closer to each other.

We find that subjects displayed increased risk aversion when a safe option was added to
a choice set, which contradicts standard theory in which risk aversion is set-independent. On
the contrary, there is no detectable change in risk attitude when a risky option was added.
Together, our finding is in line with the Avoidable Risk Expected Utility model by Lim (2021),
which proposes greater risk aversion when risk is avoidable than when it is not, and draws a
difference to models like the compromise effect which abstract from risk preferences and in so
doing indiscriminately predicts an effect even when a riskier option is added.2 Therefore, our
evidence suggests that certain set-dependent preferences are specific to the risk domain, and
adds to the literature that studies set-dependent and context-dependent preferences more
broadly.

Our finding that risk aversion increases with avoidable risk is consistent with suggestive
2The compromise effect broadly characterizes the behavior of choosing the intermediate options. When

adding a very safe (risky) option to a binary choice set, the safer (riskier) of the original two becomes the
intermediate option, which increases the likelihood of being chosen.

2



evidence already in the literature. The Allais (1953)’s paradox is one example: In two bi-
nary choice problems, in which one contains a sure prize and the other does not, subjects
overwhelmingly choose the sure prize even when it is in violation of expected utility’s pre-
dictions.3 In Wakker and Deneffe (1996), a novel method of eliciting risk aversion without
involving a sure prize was introduced, and they found that risk aversion in general decreased.
Herne (1999), using lotteries of the form “probability p on prize x” to study set effect on
choices, also found that the availability of safer option (greater probability of a lower prize)
increases risk aversion, although they experiment was not designed to disentangle the effect
of a riskier option.

Although existing evidence leans in our direction, the idea that adding a riskier lottery
can also affect risk aversion is not without support. For example in Kroll and Vogt (2012), the
addition of a riskier lottery decreased risk aversion, which contradicts our finding. However,
since they rely on the use of certainty equivalence to measure risk aversion, they did not test
for changes in risk aversion when, instead, a safer lottery was added (since a sure prize is
always present).

Similar in spirit to Lim (2021), Bleichrodt and Schmidt (2002) proposes a model that
restricts attention to binary comparisons, in which a decision maker uses a different utility
function when a sure prize is present than when it is not. Since our design is one in which
a total of three options may be present at the same time, we primarily refer to Lim (2021)’s
Avoidable Risk Expected Utility as our model of interest.

The rest of the paper is organized as follows. Section 2 presents our main hypotheses
and the underlying intuitions. Section 3 describes the methodology, experimental design,
and the dataset, whereas the findings are reported in Section 4. Section 5 analyzes the the
consistency of our data with competing models. Section 6 concludes.

2 Hypotheses

Increase in risk aversion upon introduction of a very safe option is a phenomenon predicted
by Lim (2021)’s Avoidable Risk Expected Utility model. Their model assumes that agents
use the safest available alternative as reference, which in turn determines a utility function
that is more concave when the reference is safer. Therefore, the composition of a choice set
affects risk aversion in the aforementioned direction. The model describes an agent who finds
risk less bearable/acceptable when it is avoidable than when it is not. On the contrary, since

3Lim (2021) shows that as long as the support of the prize space has size three, which is the case for the
majority of Allais-type experiments, a violation of the Independence axiom in the standard direction (where
the safe prize is chosen whenever available) implies a more concave utility function for the choice set that
contains a safe prize.

3



the introduction of a very risky option does not change the amount of avoidable risk, it also
does not change risk aversion.

Specialized to risk preferences, the Avoidable Risk Expected Utility model makes starkly
different predictions when compared to models of set-dependent preferences that applies
broadly to all multi-attributes alternatives. For instance, Simonson (1989)’s compromise
effect suggests that the introduction of an extreme option would render some of the existing
alternatives as a compromise, resulting in their increased likelihood of being chosen. In our
setting, starting from a choice between a safer and a riskier options, adding a very safe option
renders the safer option a compromise; on the other hand, and adding a very risky option
renders the riskier option a compromise. As result, compromise effect predicts that the safer
and riskier options would both experience increased likelihood of being chosen, depending
on what is added. The opposite prediction is given by the repulsion effect Frederick et al.
(2014), where the addition of an option reduces the likelihood of choosing its nearby options.

In summary, the effects of adding a very safe lottery and very risky lottery are summarized
in Table 1.

Table 1: Changes in risk attitude upon addition of extreme options

Addition of very
safe options

Addition of very
risky options

Standard Expected Utility No change No change
Avoidable Risk Expected Utility Increased No change

Compromise effect Increased Decreased
Repulsion effect Decreased Increased

In this paper we focus on 50/50 lotteries, each taking the form “a 50% chance of x (low
prize) and a 50% chance of y (high prize)”. For example, a safer lottery (S) yields $250 and
$200 each with 50% chance and a riskier lottery (R) yields $500 and $50 each with 50%
chance. Similarly, a safest lottery (SS) and a riskiest lottery (RR) are related by less and
more spread out prizes. For each set of S,R, SS,RR, we study the resulting behavior when
subjects face the choice sets {S,R}, {SS, S,R}, and {S,R,RR}.

Our behavior of interest is when subjects choose R from {S,R} but S from {SS, S,R},
reflecting increased risk aversion upon the introduction of a very safe option. Moreover, if
subjects choose R from {S,R} but SS from {SS, S,R}, although this behavior is consistent
with expected utility when arbitrary utility functions are used, we can still conclude that
subjects display increased risk aversion beyond what is allowed by any CARA / CRRA utility
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functions (for which we consider as the benchmark). Taken together, we say that subjects
display increased risk aversion upon introduction of SS if they choose R from {S,R} but S
or SS from {SS, S,R}, and decreased risk aversion upon introduction of SS if they choose
S from {S,R} but R from {SS, S,R}. Changes in risk aversion is defined similarly when RR

is introduced. Subsection 5.1 formalizes our method of classifying changes in risk aversion.

Hypothesis 1 The addition of a very safe option SS leads to more-risk-averse choices.

Hypothesis 2 The addition of a very risky option RR does not lead to more-risk-loving
choices.

Hypothesis 3 The effect of adding a very safe option SS is robust to different types of
SS: degenerate vs non-degenerate and more-appealing vs less-appealing.

3 Experimental Design

3.1 Task

The experiment involves a series of choices between lotteries. In each round, subjects choose
one lottery between the two or three options available, as displayed in Figure 3.1. Each lottery
is expressed as a pair of outcomes (dollar amounts), each with 50% chance of realization.
Subjects have no time limit to make the choice, and no feedback is provided upon choice.
The whole task includes 120 rounds, with the possibility to take short breaks every 30 rounds.
All subjects faces the same list of choice sets. The order of presentation of the rounds is
randomized at the subject level; the on-screen locations of the lotteries and the positions of
the two outcomes (high and low prize) is randomized at the subject-round level. One of the
chosen lotteries is randomly selected at the end of the session and implemented for the bonus
payment. See Appendix A for additional details on the task.

3.2 Dataset

Each subject faces 120 choice sets, divided into 90 target rounds and 30 control rounds. Target
rounds are designed specifically to test the main hypotheses of the study (details below).
Control rounds are designed to detect possible heuristics in choices under uncertainty.

The target rounds are grouped into conditions, following the paradigm typically used to
study decoy effect (Soltani et al. (2012); Pettibone (2012); Dumbalska et al. (2020)). Each
condition is comprised of 6 rounds that always include two target lotteries, and sometimes
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(a) Binary choice (b) Trinary choice

Figure 3.1: Example of choice between two or three lotteries.

include a third option. The set of rounds in the same condition are used to test how the
third option affects the choice between the two target lotteries. For the rest of the paper, we
will call the two target lotteries S (safe) and R (risky), and the third options SS (safest) and
RR (riskiest). SS, S,R,RR are ordered by increasing spread of prizes, i.e., the lower prize of
SS is greater than the lower prize of S, the higher prize of SS is less than the higher prize
of S, and so on. In every choice set, no two lotteries are related by first-order stochastic
dominance. This is the main difference with the typical decoy effect design, in which the
third option is stochastically dominated by one of the targets. Figure 3.2 illustrates the
relationship between these lotteries in various conditions used in the study. In addition to
the safest option SS, we also used other types of safe lotteries as third option (thereafter
called SS2, SS3, and SS4) to test the robustness of the results across different levels of
certainty and attractiveness. Lotteries SS and SS3 are degenerate lotteries, SS2 and SS4

are non-degenerate lotteries. SS3 and SS4 have lower payoffs compared to their counterpart
SS and SS2. See Appendix A for additional details on the the procedure used to generate
the lotteries.

The control rounds are designed to detect heuristics (e.g., maximizing the downside,
minimizing the upside), and are not part of the main analyses. Like the target rounds,
control rounds include binary and trinary choice sets, and within each round there are no
first-order stochastically dominated options. These choice sets contain options with large
positive (resp. negative) risk premia, for which we expect choices in favor of the riskier (resp.
safer) options. Systematically failing to do so would suggest extreme risk preferences (a
possible confounding factor for our test) or decision processes that follow simple heuristics,
such as maximizing the lowest (resp. highest) payoffs or minimizing (resp. maximizing)
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(a) Lotteries in one condition (fixed (d, α)). (b) Lotteries used in different conditions

Figure 3.2: Example of groups of lotteries used in the study. (a) Target lotteries S (safe)
and R (risky). They lie in the same indifference curve according to a CRRA utility function
(fixing a value α for the relative risk coefficient and a degenerate lottery d). The third options
SS (safest) and RR (riskiest) lie below the indifference curve. (b) The parameters d and α
were varied to obtain different conditions.

variance.

3.3 Procedure

The experiment was conducted in CELSS (Columbia Experimental Laboratory of Social
Sciences, Columbia University, New York, USA) between August and September 2019. It was
coded in MATLAB (Release 2018b) using Psychotoolbox 3 (Psychophysics Toolbox Version
3). 55 paid volunteers were recruited using the platform ORSEE (Online Recruitment System
for Economic Experiments) Greiner (2015)and were naive to the main purpose of the study.
All subjects provided written, informed consent. The experiment took on average 45 minutes,
including instructions, payment, and another set of questions not analyzed in the present
paper.

Upon completion, subjects received payment in cash that depended on the choices they
had made. One trial was randomly selected for implementation, for which the chosen lottery
was played and the outcome was paid. Each subject also received a $10 show-up fee. The
average payment was $16.70.

Instructions were provided both (i) on the computer screen as slides that can be browsed
by each subject at the desired pace and (ii) as a paper printout that is available to the
subject throughout the experiment. The two versions of the instructions contained the same
information verbatim. At the beginning of the experiment, subjects were informed of the
payment structure, the no-deception policy of the laboratory, and that their decisions would
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not affect the questions they would face in other rounds.

4 Descriptive Results

We present the results of the experiment in two sections. First, we present the model-free
results on choice probability and WARP violations. In the next section, we analyze how the
results can be reconciled with various families of choice models (Expected Utility, Prospect
Theory, Random Utility).

4.1 Treatment Effect

We analyze the frequency of choosing a safer option (either S or SS) in the binary and
trinary choice. In the binary choice trials, participants chose the safe lottery S 63.4% of the
times. The frequency of choosing one of the safe options in trinary choices trials with SS

is significantly higher (H1, 73.3%, p<0.0001, Wilcoxon signed-rank test with data clustered
at the subject level), whereas it is not significantly different when RR was added (H2,
60.4%, p=0.149, Wilcoxon signed-rank test). The frequencies and confidence intervals are
shown in Figure 4.1. Both results are consistent with the hypotheses previously discussed.
Subjects choose safer options more often when a very safe option SS is introduced, but the
choice probability is not significantly different when a very risky third option RR is added.
Subsection 5.1 shows that this pattern can me modeled as increased risk aversion when SS

is added and no change in risk aversion when RR is added.

4.2 Robustness Across Safe Options

One immediate question is whether this result relies on the characteristics of the safest
option introduced in the choice set. SS is a degenerate lottery with expected value much
lower than lottery S, and both of these characteristics could be necessary in order to observe
the phenomenon described above. In order to answer this question, we use different versions
of SS that differ in two dimensions: level of certainty and attractiveness.

We collect data for a series of trinary choices that include S, R, and a third safest option
(therefore called SS2, SS3, SS4). Lotteries SS2 and SS4 are non-degenerate lotteries.
Lotteries SS3 and SS4 are more attractive safest lotteries (more similar to target lottery S)
as they have higher payoffs than SS and SS2.

Figure 4.2 and Table 2 show that the behavior observed for SS is qualitatively and
quantitatively analogous to the one observed for the three robustness conditions. Consistent
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Figure 4.1: Frequency of Safe Choices. Probabilities and 95% Confidence Intervals for safe
group choices (S or SS) across conditions.

with the third hypothesis, we have a larger probability of choosing a safe option (p < 0.0001

Wilcoxon signed-rank test).
Figure C.1 reports the panel data on the direction of risk aversion switches across

SS − SS4. Table 2 provides further details on choice probabilities. The p-values for the
Wilcoxon signed-rank test are calculated within subject with respect to the null hypothesis
Pr (safe group| {S,R, Z}) = Pr (safe group| {S,R}), where Z = SS, SS2, SS3, SS4, RR, safe
group contains S, SS − SS4, and risky group contains R and RR.

{S,R} {S,R, SS} {S,R, SS2} {S,R, SS3} {S,R, SS4} {S,R,RR}

S 63.39% 62.42% 62.91% 57.21% 56.00% 60.36%
R 36.61% 26.67% 25.82% 26.06% 24.24% 32.48%
Z 10.91% 11.27% 16.73% 19.76% 7.15%

Safe group 63.39% 73.33% 74.18% 73.94% 75.76% 60.36%
Risky group 36.61% 26.67% 25.82% 26.06% 24.24% 39.64%

Wilcoxon SRT <0.0001 <0.0001 <0.0001 <0.0001 0.1489

Table 2: Safe and risky choices across choice sets.
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Figure 4.2: Robustness of the results for lotteries with different level of Certainty and At-
tractiveness. Choice probabilities and 95% confidence intervals.

4.3 WARP Violations

So far we have tested the hypothesis at the aggregate level, by considering a pair of obser-
vations (choice probabilities in different types of choice sets) for each participant. Another
formal way to look at the respondents behavior is to investigate inconsistencies in the choice
pattern within each subject. We do this by looking at the number and direction of Weak
Axioms of Revealed Preferences (WARP) violations for each participant. Given an observed
choice a in a choice set {a, b}, we observe a WARP violation if, after introducing a new option
c to the choice set, the subject chooses b—reversing her choice of a over b.

Table 3 displays the results for different types of trials. WARP violations are overwhelm-
ingly in the direction of switching from R to S when SS−SS4 was added, reflecting increased
risk aversion, but equally likely in either direction when RR was added, reflecting inconclusive
change in risk aversion.

This table reports the frequency of WARP violations between {S,R} and {S,R, Z}, where
Z = SS, SS2, SS3, SS4, RR. The upper part of the table reports WARP-compliance due to
selecting the third option (first row) or the same option as in the binary choice (second row).
WARP violations (third row) are separated into the two possible directions. The presence of
both S → R and R → S switches in all conditions will be discussed further in Subsection 5.3,
when we analyze the data using Random Utility. Assuming that subjects sometimes choose
randomly (with “mistake” probabilities depending on the utility difference between options),
a symmetric distribution of the switch directions (switch probability conditional on WARP
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violation) as we observe in RR trials is consistent with the no-effect hypothesis when a
very risk option is introduced. On the other hand, the skewed behavior in the SS trials is
consistent with our hypothesis that introducing a very safe options makes subjects more risk
averse.

Z = SS SS2 SS3 SS4 RR

WARP (Z) 11% 11% 17% 20% 7%
WARP (not Z) 68% 71% 65% 62% 70%

WARP
Violation

20% 18% 18% 18% 23%

Conditional on WARP violations:

R → S 71% 74% 69% 75% 50%
S → R 29% 26% 31% 25% 50%

Table 3: Choice probabilities and types of WARP violations.

More details on choice probabilities and transition probabilities between binary and tri-
nary trials can be found in Appendix C.

5 Models

In this section, we consider three families of models of choice under risk. For each model,
we introduce how they provide a framework for the analysis of choices, we illustrate how
they relate to the main hypotheses of interest, and we compare these hypotheses with the
data collected. In the first part, we consider expected utility with a risk aversion coefficient
that may vary across conditions. In the second part, we show the relationship between
Lim (2021)’s Avoidable Risk Expected Utility (AREU) and Kahneman and Tversky (1979)’s
Prospect Theory. In the third part, we investigate the compatibility of our dataset with
models of random utility, and argues that they are in general incompatible.

5.1 Expected Utility and Avoidable Risk

5.1.1 Framework

Consider a stochastic expected utility (EU) model (Blavatskyy (2007)) in which the (true)
utility of a 50/50 lottery p is given by the pair of equally likely outcomes (x1, x2) and a CRRA
coefficient α,
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Uα (p) = Epu (x) =
2∑

i=1

1

2

(xi)
1−α − 1

1− α
,

Higher values of α reflect greater risk aversion. We consider stochasticity in choice by intro-
ducing noise, Ûα (p) = Uα (p) +

ϵ
λ
, where ϵ is a Type 1 Extreme Value error (T1EV, or logit

error) and λ is a scalar. Equivalently, given the true utility and an accuracy parameter λ,
the probability of choosing lottery pi from choice set A = {p1, p2, ..., pJ} is characterized by

Pr (pi, A) =
eλUα(pi)∑
j e

λUα(pj)
,

where higher values of λ results in fewer deviations from the deterministic behavior of an
agent who maximizes Uα (p).

5.1.2 Mechanism: Change in Risk Aversion

Our analysis deems “chooses S over R” as more risk averse than “chooses R over S”. In
addition to being intuitive, this approach is backed by a formal definition of more risk averse,
which we now introduce.

Suppose we restrict attention to the class of utility functions defined by constant relative
risk aversion (CRRA), commonly used across economics and finance research for their intu-
itive properties. Then, variation in the Arrow-Pratt risk aversion coefficients agree with our
notion of changes in risk aversion. The same is true if, instead, we restrict attention to the
constant absolute risk aversion (CARA) class.

Let p and q be two 50/50 lotteries where the high prize of lottery p is hp and its low
prize is lp. Then, restricting attention to CRRA utility functions, there exists an Arrow-
Pratt coefficient ᾱ such that EUα (q) ≥ EUα (p) if and only if α ≥ ᾱ. The existence of ᾱ
is guaranteed as long as one lottery does not first-order stochastically dominate the other.
In other words, we can formalize the statement “an agent who chooses q over p is more risk
averse than an agent who chooses p over q” using CRRA utilities: this behavior implies a
higher risk aversion coefficient. 4

Formally, where Uα (L) is the expected utility of L under a CRRA utility function with
coefficient α:

Fact. Let SS, S,R,RR be four 50/50 lotteries sorted by increasing spread of low and high
4A similar argument can also be made when we restrict attention to CARA utilities instead, although ᾱ will

be different. This is because of the “single coefficient” nature of CARA and CRRA, that a single observation
is sufficient to pin down the range of α that explains an underlying behavior. The same comparative statics
cannot be done with DARA, etc.
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prizes. There exists a unique CRRA coefficient ᾱ such that

1. Uα (S) > Uα (R) if and only if α > ᾱ,

2. min {Uα (SS) , Uα (S)} > Uα (R) if and only if α > ᾱ,

3. min {Uα (R) , Uα (RR)} > Uα (S) if and only if α < ᾱ.

5.1.3 Hypotheses

We use this fact to develop and test our hypotheses, and then conclude that risk aversion has
increased from choice set A to choice set B if subject’s choices imply a greater risk aversion
coefficient in B than in A. Specifically, each choice from a choice set is consistent with
a (deterministic) range of CRRA coefficients. We compare the implied ranges to conclude
changes in risk aversion.

We can categorize changes in risk attitude as follows: (1) If a subject chooses R from
{S,R} and SS or S from {S,R, SS}, her behavior is inconsistent with a persistent CRRA
coefficient in the direction of becoming more risk averse in the presence of SS. (2) If a
subject chooses S in {S,R} and R in {S,R, SS}, then she has become more risk seeking
in the presence of SS. (3) Any other choice combinations from {S,R} and {S,R, SS} is
consistent with a single CRRA coefficient.

By fitting a EU using the Maximum Likelihood method we can estimate the risk aversion
coefficient for different groups of trials (binary choices, trinary with SS, trinary with RR).
The null hypothesis is that the estimated coefficient is the same across types of trials. The
alternative (AREU) hypothesis is that the estimated coefficient for the trinary choices with
SS is significantly larger than the one estimated for the full dataset, but that the coefficient
for the trinary choices with RR is not.

Although our method of classifying changes in risk aversion is formalized with CRRA,
it is also consistent with basic intuitions. When a subject switches from choosing R, a
higher spread lottery, to S, a lower spread lottery, we believe it is natural to interpret it
as increased risk aversion. Similarly, the opposite behavior corresponds to decreased risk
aversion. Moreover, choosing R in {S,R} but SS in {S,R, SS} means, despite having chosen
a high spread lottery (R) over a low spread one (S), she now prefers the lowest spread lottery
above all else. Again, this suggests that her risk aversion is greater in the latter choice
problem.

To simplify notation, it suffices to categorize choices into the safe group when S or SS

is chosen, and the risky group when R or RR is chosen. For Z = SS,RR, when we observe
a risky group choice from {S,R} but a safe group choice from {S,R, Z}, we say that the
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addition of Z increases risk aversion; likewise, a safe group choice from {S,R} but a risky
group choice from {S,R, Z} suggests that the addition of Z decreases risk aversion. Any
other combination of choices between {S,R} and {S,R, Z} is consistent with a single CRRA
coefficient.

5.1.4 Tests and Results

To fit the EU model, we allow α to differ across binary choice sets, when SS was added,
when RR was added, etc. This allows for the same participant to display different risk
preferences when third options are added to the choice set.5 Consistently with the predictions

All data
Trinary (RR only)
Trinary (SS only)
Trinary (all SS's)

Figure 5.1: Model Fitting: Expected Utility Under Different Risk Aversion Coefficients

of AREU, estimated parameters for risk aversion differed across choice sets systematically.
The estimated risk aversion coefficient α is 0.87 when all choice sets are pooled together.
For {S,R, SS} (and variations of SS described in Appendix A), we observe increased risk
aversion: the estimated parameters for α are 0.92 for SS trials and 0.91 when we pool together
all SS−SS4 (statistically different from 0.87, p-value< 0.01 using bootstrap standard errors).

5For “All data”, we used all trials, including control trials. We consider the logit model described in the
paragraph with a lower bound in the choice probability. Subjects that always choose the safest alternatives
or (less frequently) always choose the riskiest alternatives provide a poor fit for the data. A parsimonious
way to discount their weight in the dataset is to introduce a 5% lower bound in the choice probabilities,
regardless of the lottery. The results are robust to the adoption of different values between 1% and 10%.
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On the contrary, the estimated α for RR trials is 0.86, not significantly different from 0.86).
These findings are in line with AREU, which suggests increased risk aversion when the safest
alternative become safer (but not when the riskiest alternative changes).

5.2 Prospect Theory

5.2.1 Framework

In prospect theory Kahneman and Tversky (1979), lotteries are evaluated with respect to a
reference point, which in turn determines gains and losses. When losses loom larger than
gains, a decision maker suffers from loss aversion, and this prominent phenomenon had been
used to explain various anomalies in economics including the endowment effect and the equity
premium puzzle.67

A well-known issue with prospect theory is the formation of the reference point. By
considering reference formation using a max-min criterion we can bring the intuition basal
to AREU in the framework of prospect theory.

In our exercise, we define as reference point the “highest minimum outcome guaranteed”
from the available lotteries. This is the outcome that can be guaranteed if the subject simply
chooses the safest alternative in the current choice set. Adding a safer option raises the
reference point whilst adding a riskier option leaves it unchanged.8

Deploying a commonly-used functional form of prospect theory, we define the value of
payoff x given reference point xRP as

vα (x, xRP ) =

(x− xRP )
α if x ≥ xRP

−β (xRP − x) α if x < xRP

,

We can use the entire dataset to estimate a stochastic choice model with three parameters:
6For example, Knetsch (1989); Kahneman et al. (1990) for endowment effect and Benartzi and Thaler

(1995) for the equity premium puzzle.
7In our experiment we do not use stochastically dominated lotteries, so we do not need to make assumptions

about whether all the lotteries are used to determine the reference point. Traditional prospect theory includes
an editing phase in which the decision maker removes from the choice set all the FOSD lotteries before
proceeding with their evaluation. The Avoidable Risk - Prospect Theory formulation that incorporates this
assumption would predict that the effect holds for lotteries like the ones we used in the study, but not for
decoys that are asymmetrically dominated by the safe lottery. We are not able to test this conjecture with
the data available.

8If the new lottery is riskier (larger spread of values, and not stochastically dominant), its lower outcome
cannot be the highest one, and the reference point is unchanged. This means that risk preferences should
also be unchanged by adding a risky lottery. Instead, if the new lottery is safer (smaller spread of values), its
lowest outcome becomes the new reference point, higher than the previous one. Moving the reference point
has two effects: on the concavity of the curve above and below the reference point, and on the range of values
that are perceived as losses, and therefore discounted further in the evaluation process.
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α (risk aversion), β (loss aversion), and λ (accuracy in the choice stage, as described in the
EU model).

5.2.2 Hypotheses

The key hypothesis is that a change in the reference point, due to the introduction of safer
option, generates change in the evaluation of payoffs due to loss aversion. We observe loss
aversion when the parameter β > 1. The experimental literature provides extensive evidence
supporting loss aversion, typically using with lotteries that involve both positive and negative
payoffs (with a reference point of zero dollars). In our design all the payoffs are positive and
the presence of loss aversion can be tested only by assuming that subjects use a different
reference point across choice sets.

5.2.3 Tests and Results

The estimates obtained using the Maximum Likelihood method confirm the hypothesis, and
the estimated value function shown in Figure 5.2 appears with the typical S-shape that
captures risk aversion (α̂ = 0.80 < 1) and loss aversion (β̂ = 1.85 > 1).

Figure 5.2: Model Fitting: Prospect Theory

The high degree of loss aversion—where the reference point is the max-min outcome of a
choice set—is consistent with the observed shift towards safer options when very safe options
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are available.

5.3 Random Utility

5.3.1 Framework

We also investigate the compatibility of our results with random utility models (RUM).9 Each
lottery p has a utility value U (p) that is subjected to mean-zero noise ϵp. Facing a choice set
A, the agent chooses p from A to maximize U (p) + ϵp, resulting in stochastic choice

Pr (p,A) = Pr [U (p) + ϵp ≥ U (q) + ϵq ∀q ∈ A] .

Under the most general setup, RUM is characterized by a set of probabilities, one for
each alternative in each choice set, Pr (p,A). In our case, p = SS, S,R,RR and A =

{S,R} , {S,R, SS} , {S,R,RR}. Moreover, it is typically assumed that Pr (p,A) ≥ Pr (p,B)

if A ⊂ B.

5.3.2 Tests and Results

According to RUM, the probability of each choice from {S,R, SS} is independent of whether a
subject has chosen S from {S,R} or R from {S,R}, under the assumption of a representative
decision maker. In our dataset, panel data rule this prediction: Figure C.1 shows that for the
conditions in which participants chose S from {S,R}, the vast majority (76%) chose S from
{S,R, SS}, and very few (9%) chose R from {S,R, SS}. On the contrary, among those who
have chosen R from {S,R}, only 40% chose S from {S,R, SS} and as many as 57% chose R

from {S,R, SS}.
Our dataset could be reconciled with RUM if we were to consider multiple populations

of representative agents. For example, suppose we have two population of agents, and each
population has their own RUM parameters, then with the right calibrations our dataset can
be obtained as a result of over-fitting (7 parameters for 5 equations).10

Another property of RUM is stochastic monotonicity,

Pr (p,A) ≥ Pr (p,B) if A ⊂ B,

9For an overview of RUM, see Manski (1977); Walker and Ben-Akiva (2002).
10The 7 parameters are Pr (S, {S,R}), Pr (S, {S,R, SS}) and Pr (R, {S,R, SS}) for each of the two

types of agents and the weight of each type. The 5 equations are the equations for, on the dataset,
Pr (S, {S,R}), Pr (S, {S,R, SS} |S, {S,R}), Pr (R, {S,R, SS} |S, {S,R}), Pr (S, {S,R, SS} |S, {S,R}) and
Pr (R, {S,R, SS} |R, {S,R}).
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which simply says that an alternative p is not chosen more often when more options are
available. Our dataset does not display stochastic monotonicity violation with the aggregate
data, where all trials are clustered together. However, this is partly due to fact that in
most trials, subjects choose S in {S,R} overwhelming (in aggregate, this happens 63% of
the time). This makes it harder for the frequency of S to increase further. We can partially
address this issue by considering the different conditions used in the study. We use pairs of
target lotteries that vary in their risk premium, and in 2 of the 15 conditions the risky lottery
is chosen more often than the safe one. When we restrict the analysis to these conditions, we
observe stochastic monotonicity violations. The presence of multiple tests requires us to be
careful about the interpretation of this result, that should be considered only as suggestive
evidence supporting the avoidable risk hypothesis and against RUMs.

As illustrated in Figure 5.3, for trials where S is chosen from {S,R} less than half of
the time (low baseline amount and high risk premium), stochastic monotonicity is violated
in that S is chosen more often in {S,R, SS} than in {S,R}. On the contrary, stochastic
monotonicity holds for R throughout. That is, for all trials—even the ones where R is chosen
from {S,R} less than half of the time—R is chosen even less often in {S,R, SS} than in
{S,R}, again suggesting that introducing SS increases risk aversion.

        Probability of S from {S,R}

(a)

Pr[S from {S,R,SS}] - Pr[S from {S,R}]

(b)

Pr[R from {S,R,SS}] - Pr[R from {S,R}]

(c)

Figure 5.3: Choices by condition. Each circle is a condition, it characterizes a set of {S,R, SS}
as described in Section 3. Figure (a) reports the frequency of S from {S,R} from each
condition. Figure (b) reports the increase in frequency of S from {S,R} to {S,R, SS}.
Figure (c) reports the increase in frequency of R from {S,R} to {S,R, SS}.

6 Conclusion

We study a specific kind of context-dependent preferences specialized to the risk domain,
where avoidable risk—captured by the presence of a safe option—increases risk aversion.
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Our experiment finds evidence of this behavior, which is in line with the prediction of Lim
(2021)’s Avoidable Risk Expected Utility model.

Using a within-subject design, we find that adding a very safe option to a choice set
changes risk aversion by increasing it. The change can be so drastic that WARP violations
occur, where a subject who originally chooses a safer option over a riskier one switches her
decision when a very safe option becomes available. On the contrary, the introduction of a
very risky option does not result in systematic changes in risk aversion.

The asymmetry between adding a very safe option and adding a very risk option suggests
that context-dependent preferences that apply more generally to multi-attributes alternatives
may not capture all context effects, especially those that are driven by the very nature of
the choice problem, in this case decisions under uncertainty. Although the compromise effect
correctly predicts that adding a very safe option leads to more risk averse choices, it also
predicts that adding a very risky option leads to more risk loving choices, which is not
observed. By capturing a unidirectional change in risk aversion that occurs only when a very
safe option is added, our experiment adds to the intuition that some context effects observed
in the risk domain may be inherent in risk preferences.
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A Appendix - Experimental Design

Task The lotteries appear on the screen in four possible locations (top, right, bottom,
left) equally distant from the fixation point placed at the center of the screen, as shown in
Figure 3.1. Each round starts with only the fixation point on the screen. After 500 ms, two
(three) empty boxes appear at random locations. At this point subjects know the number
of available options and their positions on the screen, but not their values. After another
500 ms, the values appear on the screen. No action is allowed for the first 3 seconds, after
which the subject may select one option using the keyboard (arrow keys to select, spacebar
to confirm). There is no time limit for the action phase. Upon confirmation, no feedback is
provided and a new round begins.

Dataset The target rounds are grouped into 15 conditions, with 6 rounds per condition.
Each condition is characterized by two parameters: a baseline dollar amount d ∈ [$3, $12]

and a CRRA coefficient α ∈ [0.3, 0.7].11 A procedural algorithm takes a pair (d, α) and
generates two target options—S (safer) and R (riskier)—and two third options—SS (safest)
and RR (riskiest). SS, S,R,RR are ordered by increasing spread of prizes, i.e., the lower
prize of SS is greater than the lower prize of S, the higher prize of SS is less than the higher
prize of S, and so on. In every choice set, no two lotteries are related by first-order stochastic
dominance.

Figure 3.2 illustrates the relationship between these lotteries. The target options, S and
R, lie on the same indifference curve under CRRA utility and risk aversion coefficient α. The
third options, SS and RR, are designed to be less appealing; they lie below the indifference
curve connecting S and R under the same utility function. Therefore, extremely risk averse
(resp. risk seeking) subjects will choose SS (resp. RR) over S and R.

In addition to SS, we also used other types of safe lotteries (SS2, SS3, and SS4) to test
whether absolute certainty and attractiveness affect our finding.

Each SS2 lottery is obtained from the corresponding SS lottery by adding 10 cents to
the high payoff and removing 10 cents from the low payoff. SS3 (degenerate) and SS4

(non-degenerate) are analogous to SS (degenerate) and SS2 (non-degenerate), but with a
smaller penalization in expected value (about 20% of the expected value instead of 50%).
SS was penalized so that subjects’ choices concentrate at the target options, S and R. In
order to reduce similarity between trials, we use a procedural algorithm that penalizes SS

11The range of parameters for α was calibrated based on estimated risk preferences in other lab experiments
(Harrison and Rutström (2008)), as well as a pilot study we conducted in the Summer 2019. This range
allows to implement the within-subject analysis of the data despite the large heterogeneity in risk preferences
across participants.
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by a random percentage between 45% and 55%. The risky options RR are generated in a
similar way, by reducing the lowest value of R by 40-60% and increasing the higher value of
R by a smaller fraction (30-60% of the subtracted value). This allows us to test whether the
effect on risk aversion depends on the attractiveness of the added safe options.

B Appendix - Heterogeneity Analysis

How robust is the main effect across subjects? We calculate the choice probabilities and run
the tests at the subject level. The result is robust when we look at the distribution of choices
across participants: 69% of the participants appear more risk averse when SS is introduced
(22% unchanged, 9% less risk averse), and only 26% appear more risk averse when RR was
added (27% unchanged, 47% less). The pair of scatter plots displayed in Figure B.1 show
the distribution of safe and risky choices across participants and how they vary after the
introduction of the third lottery.

Figure B.1: Proportion of safe group choices (S or SS) for different types of trials: binary
choices (x-axis) and trinary choices (y-axis), based on which third option is added. On the
left, the third option is SS. On the right, the third option is RR.
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C Appendix - Conditional Choice Probabilities

The figure and table reports panel data on changes in risk aversion. The leftest bar reports
the probability that S was chosen (from {S,R}) in Blue, and R in Red. The second bar
reports that, conditional on choosing R from {S,R}, 57% chose R from {S,R, SS}, 4%
chose SS, and 40% chose S. Similarly, conditional on choosing S from {S,R}, 9% chose
R from {S,R, SS}, 15% chose SS, and 76% chose S. The third, fourth, and rightest bars
report the same information but for {S,R, SS2}, {S,R, SS3}, and {S,R, SS4}.

Unconditional probabilities [after excluding decoy]
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36%
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Figure C.1: Panel Data on Changes in Risk Aversion
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D Appendix - Results Across Conditions

Figure D.1: Choice Frequencies Across Trials Generated with Different CRRA Coefficients
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E Appendix - Allais Task

Subjects in our experiment took an Allais Task at the end of the experiment. In this task,
they faced multiple choice sets containing lotteries of the same color on the leftest figures.
The Green choice set contains degenerate lottery, and no other choice sets do. Blue and Red
choice sets are related to the Green choice set by common ratios.

Figure E.1: Trials Generating Process for Allais Task
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These figures report the outcome of our Allais Task. C,D correspond to the Green lotteries in
Figure E.1, where C is the degenerate lottery. If a subject chooses B from {A,B} but C from
{C,D}, the subject committed the Allais paradox, which is a violation of expected utility
maximization. In the bars, Blue corresponds to A,C,E and Red corresponds to B,D, F . The
left figure, for example, reports that 59 of the choices from {A,B} are B, and conditional on
choosing B from {A,B}, 52% chose D from {C,D} and 48% chose C.

Figure E.2: Data from Allais Task
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